A Study in Generation Functions for Monte Carlo Reservoir Estimations By: Nic Clare

4/23/2015

Outline

- Introduction
- Generation Functions
- Testing
- Results
- Recommendations

Introduction

1. What is a Monte Carlo Reserve Estimation?

2. How can we use it to generate these distributions and confidences?

Introduction

- 1. The Monte Carlo Reserve Estimation is an iterative, random process used to generate the probability distribution function for a specific scenario.
- 2. Utilizing the Volumetric OOIP Equation OOIP = c A h ϕ (1-Sw) / Bo

Introduction

- Random Process generates random values, within a specified range, for each of the variables in the OOIP equation
- 2. With the random values the OOIP is calculated
- Iterative this process is repeated many times to give a range of possible values

Generation Functions

This study looks at the way the program will pick these random values

- Discrete Random Variable
- Beta ($\alpha = \beta = 1.5; \alpha = \beta = 2$)
- Chi Squared
- Gamma ($\alpha = \beta = 1$; $\alpha = \beta = 2$; $\alpha = 2$, $\beta = 1$)

Generation Functions

Generation Functions

Testing

- 2 real fields
 - 1 "well" across each range
- 10 theoretical fields
 - 3 of each range and 1 random
 - 50 random "wells" in each field

Properties	Narrow Range	Medium Range	Wide Range	
Porosity	.1>	.2 > Phi > .1	.3+	
Thickness (ft)	30 >	40 > t > 30	50+	
Area (acres)	300 >	500 > A > 325	600+	
Oil Saturation	.2 >	.3 > So >.25	.35+	
Bo (rb/STB)	.15 >	.25 > Bo > .15	.25+	

Testing

Monte Carlo Probability Densities

- 10k iterations
- P50 demonstrates best values
- Change $< 0.01 \% \rightarrow \text{constant}$

Results

11

T1

· 1 T · 1

Total Std Dev	131%	11%	12%	48%	426%	3414%	16%
Total Mean	145%	62%	53%	77%	405%	2155%	46%
N Mean	61%	53%	43%	43%	133%	307%	33%
10N	36.3%	47.3%	38.7%	30.0%	68.1%	130.2%	26.8%
9N	61.6%	46.2%	36.1%	44.8%	123.9%	239.2%	30.1%
8N	84.7%	66.0%	54.6%	54.4%	207.9%	551.9%	41.8%
M Mean	78%	62%	54%	55%	190%	506%	40%
7M	67.1%	52.3%	41.8%	46.8%	141.1%	294.4%	29.5%
6M	119.0%	57.7%	47.3%	77.7%	269.4%	685.0%	43.9%
5M	47.9%	76.4%	73.2%	41.8%	160.6%	538.1%	46.3%
W Mean	297%	72%	61%	133%	891%	5652%	64%
4W	472.7%	69.8%	68.3%	194.8%	1491.2%	11400.3%	82.6%
3W	225.7%	70.9%	56.0%	109.1%	625.2%	2945.8%	56.0%
2W	191.3%	74.4%	59.6%	94.4%	555.4%	2610.9%	53.7%
Test	Discrete	Beta (1.5)	Beta (2)	ChiSqr	Gamma (2,1)	Gamma (2)	Gamma (1)
		Mean Perc	cent Error Io	r the Theorem	tical Fields		

Results

Mean Percent Error for the Two Real Fields and Random Field							
Test	Discrete	Beta (1.5)	Beta (2)	ChiSqr	Gamma (2,1)	Gamma (2)	Gamma (1)
T11:W	25%	80%	70%	16%	136%	553%	52%
T12:W	79%	72%	58%	21%	237%	819%	33%
Avg W	52%	76%	64%	18%	186%	686%	43%
T11:M	49%	60%	46%	16%	124%	307%	22%
T12:M	91%	36%	21%	61%	170%	322%	16%
Avg M	70%	48%	33%	39%	147%	314%	19%
T11:N	29%	53%	42%	5%	69%	162%	23%
T12:N	66%	14%	2%	53%	102%	154%	25%
Avg N	47%	34%	22%	29%	85%	158%	24%
Total Avg	57%	53%	40%	29%	140%	386%	29%
T1:Rand	95%	69%	55%	60%	243%	683%	44%

Results

Total Place Scoring							
Fxn	Discrete	Beta (1.5)	Beta (2)	ChiSqr	Gamma (2,1)	Gamma (2)	Gamma (1)
Wid	5	3	1	4	6	7	2
Med	5	4	2	3	6	7	1
Nar	5	4	3	2	6	7	1
Ran	5	4	2	3	6	7	1
Tot	5	3	2	4	6	7	1
SUM	25	18	10	16	30	35	6

Conclusions

- 4 generation functions less % change than discrete
- 1. Gamma ($\alpha = \beta = 1$)
- 2. Beta ($\alpha = \beta = 2$)
- 3. Beta ($\alpha = \beta = 1.5$) and Chi-Squared

Recommendations

- This demonstrates need for further investigation
- Wider number of generation functions
- More data (theoretical and real)

Thank You

- 1. Paul Fulton Research Grant
- 2. Triad Hunter

Questions?

