Analysis of Appalachia's Geology on Completion Designs

Nicholas Cuaresma and Brittany Martin Marietta College 2019

Agenda

- Geologic History
- Description of Variables
- Methodology
- Results
- Conclusions

Geologic History

Brittany Martin

Utica/Point Pleasant Formation

- Ordovician aged black shale
- Taconic Orogeny began the formation of the Appalachian Mountains

Deposition of Marcellus Formation

- Shallow seawaters covered Southeastern Ohio, West Virginia, and Pennsylvania
- The Acadian Orogeny continued creating the Appalachian Mountains
- Organic-rich sediments were deposited in deep water during the collision

Formation of First Joint (J₁)

- Collision of Gondwana and Laurentia caused a natural stress to form.
- This stress created joints (J_1)

Formation of second Joint (J₂)

Gondwana and Laurentia were locked in place and continued to pivot creating another stress field.

Example of J_1 and J_2

Formation of Natural Fractures

- Solid kerogen organic matter converts to liquid crude oil during catagenesis.
- This increases the amount of fluid, while porosity remains constant; therefore, pore fluid pressures increase.
- This results in natural hydraulic microfracture

Case Study

Nicholas Cuaresma

The Variables We Chose

- The variables were hypothesized to each have a major impact on production with a linear fit
- Water
 - Defined as bbl of water pumped in frac job
 - Compared water vs. sand and to see which was the most important variable to optimize
- Sand
 - Defined as pound of sand/proppant pumped in frac job
 - Compared water vs. sand and to see which was the most important variable to optimize
- Azimuth
 - Defined in degrees
 - Wanted to see what the plane of optimized azimuth was and how far it could be deviated from without major losses

Our Methodology

- Trendlines
 - Plotted Water and Sand vs. Production
 - Graphed Production vs. Azimuth
- Multiple Variable Regression
 - Using excel, ran multi-variable regression that analyzed sand, water, and azimuth vs. the respective production value simultaneously
 - Removed variables that did not have p-values less than .05
 - Remaining variables were the most impactful variables
 - Output equation removed variables that had p-value greater than .05

• Wellbore Azimuth: 149-154

Susquehanna, Pennsylvania

Wellbore Azimuth: 150-155

Our Results

- Variables listed left to right from most important to least important
- Ohio
 - Y = 1.18 + 3.8*10⁻⁸ * X1
 - Water, Sand, Azimuth
- West Virginia
 - Y = 1.31 3.4*10⁻⁸ * X1 + 4.11*10⁻⁸ * X2
 - Sand, Water, Azimuth
- Pennsylvania
 - Y = 3.14 2.8*10⁻⁷ * X1 + 3.23 * 10⁻⁷ * X2
 - Water/Sand, Azimuth

Key	
X1	Water
X2	Sand
X3	Azimuth

What Do the Results Mean for Vertical and Horizontal Operations?

Vertical

- Ibrahim et al.,2018
- Stated multistage fracturing completions is still applicable and better than typical plug and perf
- More cost savings and quicker flowback
- Study was done in Oman

Horizontal

- Utica
 - Water is the most important variable to maximize and optimize
- Marcellus
 - Sand is the most important variable to maximize and optimize
- Belmont: (149-154 degrees)
- Susquehanna: (150-155)
- Wetzel: (163-168)

Questions?